Fast and Guaranteed Tensor Decomposition via Sketching
نویسندگان
چکیده
Tensor CANDECOMP/PARAFAC (CP) decomposition has wide applications in statistical learning of latent variable models and in data mining. In this paper, we propose fast and randomized tensor CP decomposition algorithms based on sketching. We build on the idea of count sketches, but introduce many novel ideas which are unique to tensors. We develop novel methods for randomized computation of tensor contractions via FFTs, without explicitly forming the tensors. Such tensor contractions are encountered in decomposition methods such as tensor power iterations and alternating least squares. We also design novel colliding hashes for symmetric tensors to further save time in computing the sketches. We then combine these sketching ideas with existing whitening and tensor power iterative techniques to obtain the fastest algorithm on both sparse and dense tensors. The quality of approximation under our method does not depend on properties such as sparsity, uniformity of elements, etc. We apply the method for topic modeling and obtain competitive results.
منابع مشابه
A tensor approach to learning mixed membership community models
Community detection is the task of detecting hidden communities from observed interactions. Guaranteed community detection has so far been mostly limited to models with nonoverlapping communities such as the stochastic block model. In this paper, we remove this restriction, and provide guaranteed community detection for a family of probabilistic network models with overlapping communities, term...
متن کاملTensor Sketching: Sparsification and Rank-One Projection
In this paper, we investigate effective sketching schemes for high dimensional multilinear arrays or tensors. More specifically, we propose a novel tensor sparsification algorithm that retains a subset of the entries of a tensor in a judicious way, and prove that it can attain a given level of approximation accuracy in terms of tensor spectral norm with a much smaller sample complexity when com...
متن کاملTensor Decomposition via Joint Matrix Schur Decomposition
We describe an approach to tensor decomposition that involves extracting a set of observable matrices from the tensor and applying an approximate joint Schur decomposition on those matrices, and we establish the corresponding firstorder perturbation bounds. We develop a novel iterative Gauss-Newton algorithm for joint matrix Schur decomposition, which minimizes a nonconvex objective over the ma...
متن کاملA Tensor Spectral Approach to Learning Mixed Membership Community Models
Detecting hidden communities from observed interactions is a classical problem. Theoretical analysis of community detection has so far been mostly limited to models with non-overlapping communities such as the stochastic block model. In this paper, we provide guaranteed community detection for a family of probabilistic network models with overlapping communities, termed as the mixed membership ...
متن کاملPArallel RAndomly COMPressed Cubes (PARACOMP): A Scalable Distributed Architecture for Big Tensor Decomposition
This article combines a tutorial on state-of-art tensor decomposition as it relates to big data analytics, with original research on parallel and distributed computation of low-rank decomposition for big tensors, and a concise primer on Hadoop-MapReduce. A novel architecture for parallel and distributed computation of low-rank tensor decomposition that is especially well-suited for big tensors ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015